lets_plot.scale_stroke_identity#
- lets_plot.scale_stroke_identity(name=None, breaks=None, labels=None, lablim=None, limits=None, na_value=None, guide='none', format=None)#
Use this scale when your data has already been scaled. I.e. it already represents aesthetic values that can be handled directly. This will not produce a legend unless you also supply the breaks and labels.
- Parameters:
- namestr
The name of the scale - used as the axis label or the legend title.
- breakslist or dict
A list of data values specifying the positions of ticks, or a dictionary which maps the tick labels to the breaks values.
- labelslist of str or dict
A list of labels on ticks, or a dictionary which maps the breaks values to the tick labels.
- lablimint, default=None
The maximum label length (in characters) before trimming is applied.
- limitslist
Continuous scale: a numeric vector of length two providing limits of the scale. Discrete scale: a vector specifying the data range for the scale and the default order of their display in guides.
- guide, default=’none’
Guide to use for this scale.
- formatstr
Define the format for labels on the scale. The syntax resembles Python’s:
‘.2f’ -> ‘12.45’
‘Num {}’ -> ‘Num 12.456789’
‘TTL: {.2f}$’ -> ‘TTL: 12.45$’
For more info see https://lets-plot.org/python/pages/formats.html.
- Returns:
- FeatureSpec
Scale specification.
Notes
Input data expected: positive numeric values.
Examples
1from lets_plot import * 2LetsPlot.setup_html() 3data = { 4 'x': [0, 1, 2], 5 'y': [1, 2, 1], 6 's': [1, 3, 2], 7} 8ggplot(data, aes('x', 'y')) + geom_lollipop(aes(stroke='s')) + \ 9 scale_stroke_identity()