scale_size_area#
- scale_size_area(max_size=None, name=None, breaks=None, labels=None, lablim=None, limits=None, na_value=None, guide=None, trans=None, format=None)#
Continuous scale for size that maps 0 to 0.
- Parameters:
- max_sizefloat
The max size that is mapped to.
- namestr
The name of the scale - used as the axis label or the legend title. If None, the default, the name of the scale is taken from the first mapping used for that aesthetic.
- breakslist or dict
A list of data values specifying the positions of ticks, or a dictionary which maps the tick labels to the breaks values.
- labelslist of str or dict
A list of labels on ticks, or a dictionary which maps the breaks values to the tick labels.
- lablimint, default=None
The maximum label length (in characters) before trimming is applied.
- limitslist
A vector specifying the data range for the scale and the default order of their display in guides.
- na_value
Missing values will be replaced with this value.
- guide
A result returned by guide_legend() function or ‘none’ to hide the guide.
- trans{‘identity’, ‘log10’, ‘log2’, ‘symlog’, ‘sqrt’, ‘reverse’}
Name of built-in transformation.
- formatstr
Define the format for labels on the scale. The syntax resembles Python’s:
‘.2f’ -> ‘12.45’
‘Num {}’ -> ‘Num 12.456789’
‘TTL: {.2f}$’ -> ‘TTL: 12.45$’
For more info see Formatting.
- Returns:
- FeatureSpec
Scale specification.
Notes
This method maps 0 data to 0 size. Useful in some stats such as count.
Examples
1import numpy as np 2from lets_plot import * 3LetsPlot.setup_html() 4np.random.seed(100) 5n = 50 6x = np.random.rand(n) 7y = np.random.rand(n) 8area = np.power(np.random.uniform(30, size=n), 2) 9ggplot() + geom_point(aes(x, y, size=area), alpha=0.7) + \ 10 scale_size_area(max_size=15)