lets_plot.scale_identity#
- lets_plot.scale_identity(aesthetic, *, name=None, breaks=None, labels=None, lablim=None, limits=None, na_value=None, guide='none', format=None, **other)#
Use this scale when your data has already been scaled. I.e. it already represents aesthetic values that the library can handle directly. This will not produce a legend unless you also supply the breaks and labels.
- Parameters:
- aestheticstr or list
The name(s) of the aesthetic(s) that this scale works with.
- namestr
The name of the scale - used as the axis label or the legend title.
- breakslist or dict
A list of data values specifying the positions of ticks, or a dictionary which maps the tick labels to the breaks values.
- labelslist of str or dict
A list of labels on ticks, or a dictionary which maps the breaks values to the tick labels.
- lablimint, default=None
The maximum label length (in characters) before trimming is applied.
- limitslist
Continuous scale: a numeric vector of length two providing limits of the scale. Discrete scale: a vector specifying the data range for the scale and the default order of their display in guides.
- na_value
Missing values will be replaced with this value.
- guide, default=’none’
Guide to use for this scale.
- formatstr
Define the format for labels on the scale. The syntax resembles Python’s:
‘.2f’ -> ‘12.45’
‘Num {}’ -> ‘Num 12.456789’
‘TTL: {.2f}$’ -> ‘TTL: 12.45$’
For more info see https://lets-plot.org/python/pages/formats.html.
- Returns:
- FeatureSpec or FeatureSpecArray
Scales specification.
Examples
1import numpy as np 2from lets_plot import * 3LetsPlot.setup_html() 4n = 50 5np.random.seed(42) 6c = np.random.choice(['#e41a1c', '#377eb8', '#4daf4a'], size=n) 7v = np.random.normal(size=n) 8ggplot({'c': c, 'v': v}, aes(x='c', y='v')) + \ 9 geom_boxplot(aes(color='c', fill='c'), size=2) + \ 10 scale_identity(aesthetic=['color', 'fill'])