stat_summary_bin#
- stat_summary_bin(mapping=None, *, data=None, geom=None, position=None, show_legend=None, inherit_aes=None, sampling=None, tooltips=None, orientation=None, fun=None, fun_min=None, fun_max=None, quantiles=None, bins=None, binwidth=None, center=None, boundary=None, color_by=None, fill_by=None, **other_args)#
Display a distribution by dividing variable mapped to x axis into bins and applying aggregation functions to each bin.
- Parameters:
- mapping
FeatureSpec
Set of aesthetic mappings created by aes() function. Aesthetic mappings describe the way that variables in the data are mapped to plot “aesthetics”.
- datadict or Pandas or Polars
DataFrame
The data to be displayed in this layer. If None, the default, the data is inherited from the plot data as specified in the call to ggplot.
- geomstr, default=’pointrange’
The geometry to display the summary stat for this layer, as a string.
- positionstr or
FeatureSpec
, default=’identity’ Position adjustment. Either a position adjustment name: ‘dodge’, ‘jitter’, ‘nudge’, ‘jitterdodge’, ‘fill’, ‘stack’ or ‘identity’, or the result of calling a position adjustment function (e.g., position_dodge() etc.).
- show_legendbool, default=True
False - do not show legend for this layer.
- inherit_aesbool, default=True
False - do not combine the layer aesthetic mappings with the plot shared mappings.
- sampling
FeatureSpec
Result of the call to the
sampling_xxx()
function. To prevent any sampling for this layer pass value “none” (string “none”).- tooltips
layer_tooltips
Result of the call to the layer_tooltips() function. Specify appearance, style and content. Set tooltips=’none’ to hide tooltips from the layer.
- orientationstr, default=’x’
Specify the axis that the layer’s stat and geom should run along. Possible values: ‘x’, ‘y’.
- fun{‘count’, ‘sum’, ‘mean’, ‘median’, ‘min’, ‘max’, ‘lq’, ‘mq’, ‘uq’}, default=’mean’
Name of function computing stat variable ‘..y..’. Names ‘lq’, ‘mq’, ‘uq’ corresponds to lower, middle and upper quantiles, default=[0.25, 0.5, 0.75].
- fun_min{‘count’, ‘sum’, ‘mean’, ‘median’, ‘min’, ‘max’, ‘lq’, ‘mq’, ‘uq’}, default=’min’
Name of function computing stat variable ‘..ymin..’. Names ‘lq’, ‘mq’, ‘uq’ corresponds to lower, middle and upper quantiles, default=[0.25, 0.5, 0.75].
- fun_max{‘count’, ‘sum’, ‘mean’, ‘median’, ‘min’, ‘max’, ‘lq’, ‘mq’, ‘uq’}, default=’max’
Name of function computing stat variable ‘..ymax..’. Names ‘lq’, ‘mq’, ‘uq’ corresponds to lower, middle and upper quantiles, default=[0.25, 0.5, 0.75].
- quantileslist of float, default=[0.25, 0.5, 0.75]
A list of probabilities defining the quantile functions ‘lq’, ‘mq’ and ‘uq’. Must contain exactly 3 values between 0 and 1.
- binsint, default=30
Number of bins. Overridden by
binwidth
.- binwidthfloat
The width of the bins. The default is to use bin widths that cover the range of the data. You should always override this value, exploring multiple widths to find the best to illustrate the stories in your data.
- centerfloat
Specify x-value to align bin centers to.
- boundaryfloat
Specify x-value to align bin boundary (i.e. point between bins) to.
- color_by{‘fill’, ‘color’, ‘paint_a’, ‘paint_b’, ‘paint_c’}, default=’color’
Define the color aesthetic for the geometry.
- fill_by{‘fill’, ‘color’, ‘paint_a’, ‘paint_b’, ‘paint_c’}, default=’fill’
Define the fill aesthetic for the geometry.
- other_args
Other arguments passed on to the layer. These are often aesthetics settings used to set an aesthetic to a fixed value, like color=’red’, fill=’blue’, size=3 or shape=21. They may also be parameters to the paired geom/stat.
- mapping
- Returns:
LayerSpec
Geom object specification.
Notes
Computed variables:
..y.. : result of calculating of
fun
...ymin.. : result of calculating of
fun_min
...ymax.. : result of calculating of
fun_max
.
To hide axis tooltips, set ‘blank’ or the result of element_blank() to the
axis_tooltip
oraxis_tooltip_x
parameter of the theme().Examples
1import numpy as np 2from lets_plot import * 3LetsPlot.setup_html() 4n = 100 5np.random.seed(42) 6x = np.random.uniform(size=n) 7y = np.random.normal(size=n) 8ggplot({'x': x, 'y': y}, aes(x='x', y='y')) + \ 9 stat_summary_bin()
1import numpy as np 2from lets_plot import * 3LetsPlot.setup_html() 4n = 100 5np.random.seed(42) 6x = np.random.uniform(size=n) 7y = np.random.normal(size=n) 8g = np.random.choice(["A", "B"], size=n) 9ggplot({'x': x, 'y': y, 'g': g}, aes(x='x', y='y', fill='g')) + \ 10 stat_summary_bin(geom='crossbar', bins=6, fatten=5, position='dodge')
1import numpy as np 2from lets_plot import * 3LetsPlot.setup_html() 4n = 100 5np.random.seed(42) 6x = np.random.uniform(size=n) 7y = np.random.normal(size=n) 8ggplot({'x': x, 'y': y}, aes(x='x', y='y')) + \ 9 stat_summary_bin(fun='mq', fun_min='lq', fun_max='uq', geom='crossbar', \ 10 bins=11, width=1, quantiles=[.05, .5, .95], boundary=0) + \ 11 geom_point()