geom_pointdensity#
- geom_pointdensity(mapping=None, *, data=None, stat=None, position=None, show_legend=None, inherit_aes=None, manual_key=None, sampling=None, tooltips=None, method=None, kernel=None, adjust=None, bw=None, n=None, map=None, map_join=None, use_crs=None, color_by=None, fill_by=None, **other_args)#
Plots data points and colors each point by the local density of nearby points.
- Parameters:
- mapping
FeatureSpec Set of aesthetic mappings created by aes() function. Aesthetic mappings describe the way that variables in the data are mapped to plot “aesthetics”.
- datadict or Pandas or Polars
DataFrame The data to be displayed in this layer. If None, the default, the data is inherited from the plot data as specified in the call to ggplot.
- statstr, default=’pointdensity’
The statistical transformation to use on the data for this layer, as a string.
- positionstr or
FeatureSpec, default=’identity’ Position adjustment. Either a position adjustment name: ‘dodge’, ‘jitter’, ‘nudge’, ‘jitterdodge’, ‘fill’, ‘stack’ or ‘identity’, or the result of calling a position adjustment function (e.g., position_dodge() etc.).
- show_legendbool, default=True
False - do not show legend for this layer.
- inherit_aesbool, default=True
False - do not combine the layer aesthetic mappings with the plot shared mappings.
- manual_keystr or
layer_key The key to show in the manual legend. Specify text for the legend label or advanced settings using the layer_key() function.
- sampling
FeatureSpec Result of the call to the
sampling_xxx()function. To prevent any sampling for this layer pass value “none” (string “none”).- tooltips
layer_tooltips Result of the call to the layer_tooltips() function. Specify appearance, style and content. Set tooltips=’none’ to hide tooltips from the layer.
- method{‘auto’, ‘neighbours’, ‘kde2d’}, default=’auto’
The method to compute the density estimate.
'neighbours'– estimates density from the number of nearby points.'kde2d'– estimates density using a smoothed 2D kernel density.'auto'– automatically selects an estimation method based on data size.
- kernelstr, default=’gaussian’
The kernel we use to calculate the density function. Choose among ‘gaussian’, ‘cosine’, ‘optcosine’, ‘rectangular’ (or ‘uniform’), ‘triangular’, ‘biweight’ (or ‘quartic’), ‘epanechikov’ (or ‘parabolic’). Only used when
method='kde2d'.- bwstr or list of float
The method (or exact value) of bandwidth. Either a string (choose among ‘nrd0’ and ‘nrd’), or a float array of length 2. Only used when
method='kde2d'.- adjustfloat
If
method='neighbours', adjust the radius in which to count neighbours. Ifmethod='kde2d', adjust the value of bandwidth by multiplying it.- nlist of int
The number of sampled points for plotting the function (on x and y direction correspondingly). Only used when
method='kde2d'.- map
GeoDataFrameorGeocoder Data containing coordinates of points.
- map_joinstr or list
Keys used to join map coordinates with data. First value in pair - column/columns in
data. Second value in pair - column/columns inmap.- use_crsstr, optional, default=”EPSG:4326” (aka WGS84)
EPSG code of the coordinate reference system (CRS) or the keyword “provided”. If an EPSG code is given, then all the coordinates in
GeoDataFrame(see themapparameter) will be projected to this CRS. Specify “provided” to disable any further re-projection and to keep theGeoDataFrame’s original CRS.- color_by{‘fill’, ‘color’, ‘paint_a’, ‘paint_b’, ‘paint_c’}, default=’color’
Define the color aesthetic for the geometry.
- fill_by{‘fill’, ‘color’, ‘paint_a’, ‘paint_b’, ‘paint_c’}, default=’fill’
Define the fill aesthetic for the geometry.
- other_args
Other arguments passed on to the layer. These are often aesthetics settings used to set an aesthetic to a fixed value, like color=’red’, fill=’blue’, size=3 or shape=21. They may also be parameters to the paired geom/stat.
- mapping
- Returns:
LayerSpecGeom object specification.
Notes
Computed variables:
..density.. : density estimate (mapped by default).
..count.. : density * number of points (corresponds to number of nearby points for
'neighbours'method)...scaled.. : density estimate, scaled to maximum of 1.
geom_pointdensity()understands the following aesthetics mappings:x : x-axis value.
y : y-axis value.
alpha : transparency level of the point. Accept values between 0 and 1.
color (colour) : color of the geometry. For more info see Color and Fill.
fill : fill color. Is applied only to the points of shapes having inner area. For more info see Color and Fill.
shape : shape of the point, an integer from 0 to 25. For more info see Point Shapes.
angle : rotation angle of the point shape, in degrees.
size : size of the point.
stroke : width of the shape border. Applied only to the shapes having border.
weight : used by ‘pointdensity’ stat to compute weighted density.
The
dataandmapparameters ofGeoDataFrametype support shapesPointandMultiPoint.The
mapparameter ofGeocodertype implicitly invokes get_centroids() function.
The conventions for the values of
map_joinparameter are as follows:Joining data and
GeoDataFrameobjectData has a column named ‘State_name’ and
GeoDataFramehas a matching column named ‘state’:map_join=[‘State_Name’, ‘state’]
map_join=[[‘State_Name’], [‘state’]]
Joining data and
GeocoderobjectData has a column named ‘State_name’. The matching key in
Geocoderis always ‘state’ (providing it is a state-level geocoder) and can be omitted:map_join=’State_Name’
map_join=[‘State_Name’]
Joining data by composite key
Joining by composite key works like in examples above, but instead of using a string for a simple key you need to use an array of strings for a composite key. The names in the composite key must be in the same order as in the US street addresses convention: ‘city’, ‘county’, ‘state’, ‘country’. For example, the data has columns ‘State_name’ and ‘County_name’. Joining with a 2-keys county level
Geocoderobject (theGeocoderkeys ‘county’ and ‘state’ are omitted in this case):map_join=[‘County_name’, ‘State_Name’]
To hide axis tooltips, set ‘blank’ or the result of element_blank() to the
axis_tooltip,axis_tooltip_xoraxis_tooltip_yparameter of the theme().Examples
1import numpy as np 2from lets_plot import * 3LetsPlot.setup_html() 4n = 1000 5np.random.seed(42) 6x = np.random.normal(size=n) 7y = np.random.normal(size=n) 8ggplot({'x': x, 'y': y}, aes('x', 'y')) + \ 9 geom_pointdensity()
1import numpy as np 2from lets_plot import * 3LetsPlot.setup_html() 4n = 5_000 5np.random.seed(42) 6x = np.random.poisson(size=n) + np.random.normal(scale=.1, size=n) 7y = np.random.normal(size=n) 8gggrid([ 9 ggplot({'x': x, 'y': y}, aes('x', 'y')) + \ 10 geom_pointdensity(aes(color='..count..'), 11 method=method) + \ 12 ggtitle("method='{0}'".format(method)) 13 for method in ['neighbours', 'kde2d'] 14])
1import numpy as np 2from lets_plot import * 3LetsPlot.setup_html() 4n = 1000 5np.random.seed(42) 6data = {'x': 10 * np.random.normal(size=n) - 100, \ 7 'y': 3 * np.random.normal(size=n) + 40} 8ggplot(data, aes('x', 'y')) + \ 9 geom_livemap(zoom=4) + \ 10 geom_pointdensity(aes(fill='..density..'), 11 color='black', shape=21, 12 show_legend=False) + \ 13 scale_fill_viridis()