lets_plot.geom_crossbar#
- lets_plot.geom_crossbar(mapping=None, *, data=None, stat=None, position=None, show_legend=None, manual_key=None, sampling=None, tooltips=None, fatten=None, color_by=None, fill_by=None, **other_args)#
Display bars with horizontal median line.
- Parameters:
- mappingFeatureSpec
Set of aesthetic mappings created by aes() function. Aesthetic mappings describe the way that variables in the data are mapped to plot “aesthetics”.
- datadict or Pandas or Polars DataFrame
The data to be displayed in this layer. If None, the default, the data is inherited from the plot data as specified in the call to ggplot.
- statstr, default=’identity’
The statistical transformation to use on the data for this layer, as a string. Supported transformations: ‘identity’ (leaves the data unchanged), ‘count’ (counts number of points with same x-axis coordinate), ‘bin’ (counts number of points with x-axis coordinate in the same bin), ‘smooth’ (performs smoothing - linear default), ‘density’ (computes and draws kernel density estimate).
- positionstr or FeatureSpec, default=’dodge’
Position adjustment. Either a position adjustment name: ‘dodge’, ‘dodgev’, ‘jitter’, ‘nudge’, ‘jitterdodge’, ‘fill’, ‘stack’ or ‘identity’, or the result of calling a position adjustment function (e.g., position_dodge() etc.).
- show_legendbool, default=True
False - do not show legend for this layer.
- manual_keystr or layer_key
The key to show in the manual legend. Specify text for the legend label or advanced settings using the layer_key() function.
- samplingFeatureSpec
Result of the call to the sampling_xxx() function. To prevent any sampling for this layer pass value “none” (string “none”).
- tooltipslayer_tooltips
Result of the call to the layer_tooltips() function. Specify appearance, style and content.
- fattenfloat, default=2.5
A multiplicative factor applied to size of the middle bar.
- color_by{‘fill’, ‘color’, ‘paint_a’, ‘paint_b’, ‘paint_c’}, default=’color’
Define the color aesthetic for the geometry.
- fill_by{‘fill’, ‘color’, ‘paint_a’, ‘paint_b’, ‘paint_c’}, default=’fill’
Define the fill aesthetic for the geometry.
- other_args
Other arguments passed on to the layer. These are often aesthetics settings used to set an aesthetic to a fixed value, like color=’red’, fill=’blue’, size=3 or shape=21. They may also be parameters to the paired geom/stat.
- Returns:
- LayerSpec
Geom object specification.
Notes
geom_crossbar() represents a vertical interval, defined by x, ymin, ymax, or a horizontal interval, defined by y, xmin, xmax. The mean is represented by horizontal (vertical) line.
geom_crossbar() understands the following aesthetics mappings:
x or y: x-axis or y-axis coordinates for vertical or horizontal bar, respectively.
y or x : position of median bar for vertical or horizontal bar, respectively.
ymin or xmin: lower bound for vertical or horizontal bar, respectively.
ymax or xmax: upper bound for vertical or horizontal bar, respectively.
alpha : transparency level of a layer. Accept values between 0 and 1.
color (colour) : color of the geometry lines. For more info see https://lets-plot.org/python/pages/aesthetics.html#color-and-fill.
fill : fill color. For more info see https://lets-plot.org/python/pages/aesthetics.html#color-and-fill.
size : lines width.
width : width of a bar. Typically range between 0 and 1. Values that are greater than 1 lead to overlapping of the bars.
linetype : type of the line. Codes and names: 0 = ‘blank’, 1 = ‘solid’, 2 = ‘dashed’, 3 = ‘dotted’, 4 = ‘dotdash’, 5 = ‘longdash’, 6 = ‘twodash’. For more info see https://lets-plot.org/python/pages/aesthetics.html#line-types.
Examples
1from lets_plot import * 2LetsPlot.setup_html() 3data = { 4 'x': ['a', 'b', 'c', 'd'], 5 'ymin': [5, 7, 3, 5], 6 'y': [6.5, 9, 4.5, 7], 7 'ymax': [8, 11, 6, 9], 8} 9ggplot(data, aes(x='x')) + \ 10 geom_crossbar(aes(ymin='ymin', y='y', ymax='ymax'))
1import numpy as np 2import pandas as pd 3from lets_plot import * 4LetsPlot.setup_html() 5n = 800 6cat_list = {c: np.random.uniform(3) for c in 'abcdefgh'} 7np.random.seed(42) 8x = np.random.choice(list(cat_list.keys()), n) 9y = np.array([cat_list[c] for c in x]) + np.random.normal(size=n) 10df = pd.DataFrame({'x': x, 'y': y}) 11err_df = df.groupby('x').agg({'y': ['min', 'median', 'max']}).reset_index() 12err_df.columns = ['x', 'ymin', 'ymedian', 'ymax'] 13ggplot() + \ 14 geom_crossbar(aes(x='x', ymin='ymin', y='ymedian', ymax='ymax', fill='x'), \ 15 data=err_df, width=.6, fatten=5) + \ 16 geom_jitter(aes(x='x', y='y'), data=df, width=.3, shape=1, color='black', alpha=.5)