lets_plot.bistro.joint.joint_plot#
- lets_plot.bistro.joint.joint_plot(data, x, y, *, geom=None, bins=None, binwidth=None, color=None, size=None, alpha=None, color_by=None, show_legend=None, reg_line=None, se=None, marginal=None)#
Produce a joint plot that contains bivariate and univariate graphs at the same time.
- Parameters:
- datadict or Pandas or Polars DataFrame
The data to be displayed.
- x, ystr
Names of a variables.
- geom{‘point’, ‘tile’, ‘density2d’, ‘density2df’}, default=’point’
The geometric object to use to display the data.
- binsint or list of int
Number of bins in both directions, vertical and horizontal. Overridden by binwidth. If only one value given - interpret it as list of two equal values. Applicable simultaneously for ‘tile’ geom and ‘histogram’ marginal.
- binwidthfloat or list of float
The width of the bins in both directions, vertical and horizontal. Overrides bins. The default is to use bin widths that cover the entire range of the data. If only one value given - interpret it as list of two equal values. Applicable simultaneously for ‘tile’ geom and ‘histogram’ marginal.
- colorstr
Color of the geometry. For more info see https://lets-plot.org/python/pages/aesthetics.html#color-and-fill.
- sizefloat
Size of the geometry.
- alphafloat
Transparency level of the geometry. Accept values between 0 and 1.
- color_bystr
Name of grouping variable.
- show_legendbool, default=True
False - do not show legend for the main layer.
- reg_linebool
True - show the line of linear regression.
- sebool, default=True
Display confidence interval around regression line.
- marginalstr, default=’dens:r’
Description of marginal layers packed to string value. Different marginals are separated by the ‘,’ char. Parameters of a marginal are separated by the ‘:’ char. First parameter of a marginal is a geometry name. Possible values: ‘dens’/’density’, ‘hist’/’histogram’, ‘box’/’boxplot’. Second parameter is a string specifying which sides of the plot the marginal layer will appear on. Possible values: ‘t’ (top), ‘b’ (bottom), ‘l’ (left), ‘r’ (right). Third parameter (optional) is size of marginal. To suppress marginals use marginal=’none’. Examples: “hist:tr:0.3”, “dens:tr,hist:bl”, “box:tr:.05, hist:bl, dens:bl”.
- Returns:
- PlotSpec
Plot object specification.
Examples
1import numpy as np 2from lets_plot import * 3from lets_plot.bistro.joint import * 4LetsPlot.setup_html() 5n = 100 6np.random.seed(42) 7data = { 8 'x': np.random.normal(size=n), 9 'y': np.random.normal(size=n) 10} 11joint_plot(data, 'x', 'y')
1import numpy as np 2from lets_plot import * 3from lets_plot.bistro.joint import * 4LetsPlot.setup_html() 5n = 500 6np.random.seed(42) 7data = { 8 'x': np.random.normal(size=n), 9 'y': np.random.normal(size=n) 10} 11joint_plot(data, 'x', 'y', geom='tile', \ 12 binwidth=[.5, .5], color="black", \ 13 marginal="hist:tr,box:bl") + \ 14 theme_minimal()
1import numpy as np 2from lets_plot import * 3from lets_plot.bistro.joint import * 4LetsPlot.setup_html() 5n = 500 6np.random.seed(42) 7data = { 8 'x': np.concatenate((np.random.normal(loc=-1, size=n), np.random.normal(loc=2, size=n))), 9 'y': np.concatenate((np.random.normal(loc=-.5, size=n), np.random.normal(loc=1.5, size=n))), 10 'g': ["A"] * n + ["B"] * n 11} 12joint_plot(data, 'x', 'y', geom='density2df', color_by='g', alpha=.75)