image_matrix#
- image_matrix(image_data_array, cmap=None, *, norm=None, vmin=None, vmax=None, scale=1, spacer=1) SupPlotsSpec#
- Display a set of images in a grid. Dimensions of the grid are determined by the shape of the input Numpy 2D array. - Each element of the input 2D array is an 2D or 3D Numpy array itself specifying either a grayscale image (2D array) or a color RGB(A) image (3D array). For more information on image arrays please see the documentation of geom_imshow() function. - Parameters:
- image_data_arrayndarray
- 2D - numpy.ndarraycontaining images.
- cmapstr, optional
- Name of colormap. For example “viridis”, “magma”, “plasma”, “inferno”, or any other colormap which is supported by the Palettable package (jiffyclub/palettable) This parameter is ignored for RGB(A) images. 
- normbool, optional, default=True
- True - luminance values in grey-scale image will be scaled to [0-255] range using a linear scaler. False - disables scaling of luminance values in grey-scale image. This parameter is ignored for RGB(A) images. 
- vmin, vmaxnumber, optional
- Define the data range used for luminance normalization in grey-scale images. This parameter is ignored for RGB(A) images or if parameter - norm=False.
- scalefloat, default=1.0
- Specify the image size magnification factor. 
- spacernumber, default=1
- Specify the number of pixels between images. 
 
- image_data_array
- Returns:
- SupPlotsSpec
- A specification describing the combined figure with all plots and their layout. 
 
 - Examples - 1import numpy as np 2from lets_plot import * 3from lets_plot.bistro.im import * 4LetsPlot.setup_html() 5np.random.seed(42) 6image = np.random.randint(256, size=(64, 64, 3)) 7matrix = np.empty((2, 3), dtype=object) 8matrix.fill(image) 9image_matrix(matrix) - 1import numpy as np 2from lets_plot import * 3from lets_plot.bistro.im import * 4LetsPlot.setup_html() 5rows, cols = 3, 3 6matrix = np.empty((rows, cols), dtype=object) 7for r in range(rows): 8 for c in range(cols): 9 w, h = 32 + 16 * c, 32 + 16 * r 10 matrix[r][c] = 256 * np.linspace(np.linspace(0, .5, w), \ 11 np.linspace(.5, .5, w), h) 12image_matrix(matrix, norm=False, scale=1.5)