Get Started#
Python versions: 3.8-3.13
OS: Linux, macOS, Windows
Installation#
pip install lets-plot
Quick Start#
1import numpy as np
2from lets_plot import *
3LetsPlot.setup_html()
4
5np.random.seed(12)
6data = dict(
7 cond=np.repeat(['A', 'B'], 200),
8 rating=np.concatenate((np.random.normal(0, 1, 200), np.random.normal(1, 1.5, 200)))
9)
10
11ggplot(data, aes(x='rating', fill='cond')) + ggsize(700, 300) + \
12 geom_density(color='dark_green', alpha=.7) + scale_fill_brewer(type='seq') + \
13 theme(panel_grid_major_x='blank')
1import numpy as np
2from lets_plot import *
3LetsPlot.setup_html()
4
5np.random.seed(12)
6data = dict(
7 cond=np.repeat(['A', 'B'], 200),
8 rating=np.concatenate((np.random.normal(0, 1, 200), np.random.normal(1, 1.5, 200)))
9)
10
11background = element_rect(fill='#14181e')
12ggplot(data, aes(x='rating', fill='cond')) + ggsize(700, 300) + \
13 geom_density(color='dark_green', alpha=.7) + scale_fill_brewer(type='seq') + \
14 flavor_high_contrast_dark() + \
15 theme(panel_grid_major_x='blank', plot_background=background, legend_background=background)
User Guide#
Coding for Economists by Arthur Turrell
Easy Data Visualisation for Tidy Data with Lets-Plot - how to make plots quickly using the declarative plotting.
Python4DS by Arthur Turrell
Data Visualisation - will teach you how to visualise your data using Lets-Plot.
Layers - a deeper dive into aesthetic mappings, geometric objects, and facets.
Exploratory Data Analysis - search for answers by visualising, transforming, and modelling your data.
Data Science with Sanjaya by Sanjaya Subedi
Create Beautiful Plots with Python Let’s Plot Library - Using the Lets-Plot library, the author shows you how to create 10 different but very common types of plots that you’ll see and create often.
Explore Your Data with Lets-Plot#
Key Features#
![../_images/ggplot2.png](../_images/ggplot2.png)
Inspired by ggplot2
A faithful port of R’s ggplot2 to Python.
You can learn R’s ggplot2 and the grammar of graphics in the “ggplot2: Elegant Graphics for Data Analysis” book by Hadley Wickham.
Multiplatform
A Grammar of Graphics for Python - works in Python notebooks (Jupyter, Datalore, Kaggle, Colab, Deepnote, Nextjournal) as well as in PyCharm and Intellij IDEA IDEs.
A Grammar of Graphics for Kotlin - a Kotlin multiplatform visualization library which fulfills your needs in the Kotlin ecosystem: from Kotlin notebooks to Compose-Multiplatform apps.
Interactive Maps
Interactive maps allow zooming and panning around your geospatial data with customizable vector or raster basemaps as a backdrop. Learn more.
Customizable Tooltips and Annotations
You can customize the content, values formatting and appearance of tooltip and annotation for layers of your plot.
Formatting
Lets-Plot supports formatting of numeric and date-time values in tooltips, annotations, legends, on the axes and text geometry layer. Learn more.
![../_images/show-ext-light.png](../_images/show-ext-light.png)
![../_images/show-ext-dark.png](../_images/show-ext-dark.png)
Option to Display Plots in External Browser
With the “show externally” mode enabled, you can easily display a plot in an external browser by invoking its show()
method. Learn more
.
Sampling
Sampling is a special technique of data transformation, which helps to deal with large datasets and overplotting. Learn more.
‘No Javascript’ and Offline Mode
In the ‘no javascript’ mode Lets-Plot generates plots as bare-bones SVG images. Plots in the notebook with option offline=True
will be working without an Internet connection. Learn more.