lets_plot.geom_errorbar¶
- lets_plot.geom_errorbar(mapping=None, *, data=None, stat=None, position=None, show_legend=None, sampling=None, tooltips=None, **other_args)¶
Display error bars defined by the upper and lower values.
- Parameters
- mappingFeatureSpec
Set of aesthetic mappings created by aes() function. Aesthetic mappings describe the way that variables in the data are mapped to plot “aesthetics”.
- datadict or DataFrame or polars.DataFrame
The data to be displayed in this layer. If None, the default, the data is inherited from the plot data as specified in the call to ggplot.
- statstr, default=’identity’
The statistical transformation to use on the data for this layer, as a string. Supported transformations: ‘identity’ (leaves the data unchanged), ‘count’ (counts number of points with same x-axis coordinate), ‘bin’ (counts number of points with x-axis coordinate in the same bin), ‘smooth’ (performs smoothing - linear default), ‘density’ (computes and draws kernel density estimate).
- positionstr or FeatureSpec
Position adjustment, either as a string (‘identity’, ‘stack’, ‘dodge’, …), or the result of a call to a position adjustment function.
- show_legendbool, default=True
False - do not show legend for this layer.
- samplingFeatureSpec
Result of the call to the sampling_xxx() function. To prevent any sampling for this layer pass value “none” (string “none”).
- tooltipslayer_tooltips
Result of the call to the layer_tooltips() function. Specify appearance, style and content.
- other_args
Other arguments passed on to the layer. These are often aesthetics settings used to set an aesthetic to a fixed value, like color=’red’, fill=’blue’, size=3 or shape=21. They may also be parameters to the paired geom/stat.
- Returns
- LayerSpec
Geom object specification.
Notes
geom_errorbar() represents a vertical interval, defined by x, ymin, ymax.
geom_errorbar() understands the following aesthetics mappings:
x : x-axis coordinates.
ymin : lower bound for error bar.
ymax : upper bound for error bar.
alpha : transparency level of a layer. Accept values between 0 and 1.
color (colour) : color of the geometry lines. Can be continuous or discrete. For continuous value this will be a color gradient between two colors.
size : line width. Define bar line width.
width : width of a bar. Typically range between 0 and 1. Values that are greater than 1 lead to overlapping of the bars.
linetype : type of the line. Codes and names: 0 = ‘blank’, 1 = ‘solid’, 2 = ‘dashed’, 3 = ‘dotted’, 4 = ‘dotdash’, 5 = ‘longdash’, 6 = ‘twodash’.
Examples
1from lets_plot import * 2LetsPlot.setup_html() 3data = { 4 'x': ['a', 'b', 'c', 'd'], 5 'ymin': [5, 7, 3, 5], 6 'ymax': [8, 11, 6, 9], 7} 8ggplot(data, aes(x='x')) + \ 9 geom_errorbar(aes(ymin='ymin', ymax='ymax'))
1import numpy as np 2import pandas as pd 3from lets_plot import * 4LetsPlot.setup_html() 5np.random.seed(42) 6n = 1000 7x = np.random.randint(10, size=n) 8y = np.sqrt(x) + np.random.normal(scale=.3, size=n) 9df = pd.DataFrame({'x': x, 'y': y}) 10err_df = df.groupby('x').agg({'y': ['min', 'max']}).reset_index() 11err_df.columns = ['x', 'ymin', 'ymax'] 12ggplot() + \ 13 geom_errorbar(aes(x='x', ymin='ymin', ymax='ymax'), \ 14 data=err_df, width=.5, color='red') + \ 15 geom_jitter(aes(x='x', y='y'), data=df, width=.2, size=1) + \ 16 scale_x_continuous(breaks=list(range(10)))