lets_plot.geom_density¶
- lets_plot.geom_density(mapping=None, *, data=None, stat=None, position=None, show_legend=None, sampling=None, tooltips=None, kernel=None, adjust=None, bw=None, n=None, fs_max=None, **other_args)¶
Displays kernel density estimate, which is a smoothed version of the histogram.
- Parameters
- mappingFeatureSpec
Set of aesthetic mappings created by aes() function. Aesthetic mappings describe the way that variables in the data are mapped to plot “aesthetics”.
- datadict or DataFrame
The data to be displayed in this layer. If None, the default, the data is inherited from the plot data as specified in the call to ggplot.
- statstr, default=’density’
The statistical transformation to use on the data for this layer, as a string. Supported transformations: ‘identity’ (leaves the data unchanged), ‘count’ (counts number of points with same x-axis coordinate), ‘bin’ (counts number of points with x-axis coordinate in the same bin), ‘smooth’ (performs smoothing - linear default), ‘density’ (computes and draws kernel density estimate).
- positionstr or FeatureSpec
Position adjustment, either as a string (‘identity’, ‘stack’, ‘dodge’, …), or the result of a call to a position adjustment function.
- show_legendbool, default=True
False - do not show legend for this layer.
- samplingFeatureSpec
Result of the call to the sampling_xxx() function. Value None (or ‘none’) will disable sampling for this layer.
- tooltipslayer_tooltips
Result of the call to the layer_tooltips() function. Specifies appearance, style and content.
- kernelstr, default=’gaussian’
The kernel we use to calculate the density function. Choose among ‘gaussian’, ‘cosine’, ‘optcosine’, ‘rectangular’ (or ‘uniform’), ‘triangular’, ‘biweight’ (or ‘quartic’), ‘epanechikov’ (or ‘parabolic’).
- bwstr or float
The method (or exact value) of bandwidth. Either a string (choose among ‘nrd0’ and ‘nrd’), or a float.
- adjustfloat
Adjust the value of bandwidth my multiplying it. Changes how smooth the frequency curve is.
- nint, default=512
The number of sampled points for plotting the function.
- fs_maxint, default=500
Maximum size of data to use density computation with ‘full scan’. For bigger data, less accurate but more efficient density computation is applied.
- other_args
Other arguments passed on to the layer. These are often aesthetics settings used to set an aesthetic to a fixed value, like color=’red’, fill=’blue’, size=3 or shape=21. They may also be parameters to the paired geom/stat.
- Returns
- LayerSpec
Geom object specification.
Notes
Computed variables:
..density.. : density estimate (mapped by default).
..count.. : density * number of points.
..scaled.. : density estimate, scaled to maximum of 1.
geom_density() understands the following aesthetics mappings:
x : x-axis coordinates.
alpha : transparency level of a layer. Understands numbers between 0 and 1.
color (colour) : color of a geometry lines. Can be continuous or discrete. For continuous value this will be a color gradient between two colors.
fill : color of geometry filling.
size : lines width. Defines line width.
linetype : type of the line. Codes and names: 0 = ‘blank’, 1 = ‘solid’, 2 = ‘dashed’, 3 = ‘dotted’, 4 = ‘dotdash’, 5 = ‘longdash’, 6 = ‘twodash’.
weight : used by ‘density’ stat to compute weighted density.
Examples
1import numpy as np 2from lets_plot import * 3LetsPlot.setup_html() 4np.random.seed(42) 5x = np.random.normal(size=1000) 6ggplot({'x': x}, aes(x='x')) + geom_density()